Dehmer Strasse 58-66
32549 Bad Oeynhausen
br>Tel.: +49 5731753-0

How a lithium-ion battery works

In order to be able to assess the dangers posed by lithium energy storage devices, knowledge of how they work can be very helpful. Important to know: There is no such thing as “one” lithium battery. Instead, there is a large number of different energy storage systems in which lithium is used in pure or bound form. A basic distinction is made between primary (non-rechargeable) and secondary (rechargeable) lithium-ion cells. In common parlance, the latter are usually meant when we speak of lithium-ion batteries or, better, lithium-ion accumulators. In this article you will learn more about the functionality and chemical properties of a lithium battery.


A battery pack is composed of several cells depending on the power. Each lithium-ion cell consists of a positive and a negative electrode, the anode and the cathode. Between them is an ion-conducting electrolyte. This guarantees the transport of lithium ions between the electrodes during the charging or discharging process. The best known form of lithium energy storage devices are the lithium-ion batteries, in which a liquid electrolyte is used.

Another important component is the separator. It prevents the direct contact between anode and cathode and thus prevents a short circuit. When discharging, lithium ions and electrons are released on the anode side. The electrons flow through the external circuit and do the electrical work. At the same time, the lithium ions migrate through the electrolyte fluid and through the separator to the cathode.

When charging, this process is reversed. Depending on the system, the structure and materials used may vary depending on the lithium-ion battery. In the lithium-polymer accumulator, the electrolyte is incorporated into the molecular framework of a polymer film. This makes it possible to dispense with the separate separator. Lithium-polymer energy storage can deliver only low discharge currents.

However, the polymer film allows a flat design, which is why such energy storage find especially in mobile phones and laptops use. The thin-film lithium cell is an energy storage in which the electrolyte is replaced by an ion-conductive gas. This allows the use of lithium metal and thus an extremely high energy density. This technique is currently an important part of lithium energy storage research.

Chemical properties

While the German Federal Institute for Occupational Safety and Health (BAuA) regards lithium-ion batteries as products under the REACH regulation, the American Occupational Safety and Health Administration (OSHA) classifies batteries as mixtures. In practice, many companies prepare and make available safety data sheets for lithium batteries even without a legal obligation to do so. These usually provide valuable information on battery storage and handling. However, details of chemical composition can often also be found, which provide information on the hazard. Basically a lithium battery can be divided into the anode, electrolyte fluid and cathode.

As a rule, graphite (C) is used as the anode material, which does not have to be labelled under the CLP Regulation.

Many different materials are used for the cathode. The exact composition of the cathode material significantly determines properties such as lifetime, charging times and performance. Iron, manganese, cobalt or nickel are often used in the cathode.

The electrolyte fluid consists of an organic solvent and a conducting salt. While there is a large variety of possible solvents, lithium hexafluorophosphate (LiPF6) is almost exclusively used as the conducting salt.

Electrolyte liquid = organic solvent + conductive salt (LiPF6)

The exact chemical composition of the respective solvent mixture is usually a manufacturer's secret. By viewing various data sheets, however, you can get an overview of the components used. The flash points of the solvent components range from + 160 ° C to sometimes below 0 ° C. This explains the thermal instability of a lithium battery.

The conductive salt contains fluorine (F), among other things. The released hydrofluoric acid (HF) in non-concentrated form can lead to various hazardous situations in a damaged lithium battery.

We are happy to advise you!

Whether on the phone, via e-mail or in person at your premises - we are happy to help and advise you. Get in touch with us.

Free expert advice 01952 811 991

Related Content

Case Study

Battery test laboratory at Phoenix testlab

DENIOS produced a system that could simulate five different test conditions for testing lithium-ion batteries. The fire protection system provided protection for the employees and effectively designed entire process chains.

Read more
Case Study

Test bench for stationary energy storage

Voltavision GmbH is a research and development service provider that operates test facilities. The company needed a separate fire section. In cooperation with DENIOS, an F90 climate container was built that could prevent all possible risks as a preventative measure.

Read more
Case Study

Showroom in the area of renewable energies for Hoppecke

HOPPECKE is a company that manufactures energy storage systems and industrial batteries. For exhibition purposes, the company needed a fire and explosion-proof container in which modern battery storage technologies could be stored and demonstrated.

Read more
Case Study

Storage of lithium-ion batteries at the motorbike manufacturer KTM

KTM Sportmotorcycle AG from Austria manufactures motorcycles. For the storage of lithium-ion batteries, a hazardous materials store was required. Together with the battery manufacturer, DENIOS constructed a technical and security room that complied with all legal conditions.

Read more

Lithium batteries: measures to prevent damage

Storing lithium-ion batteries often presents companies with a dilemma. So far there are no legal regulations that could be used as a guide. It is therefore up to the companies themselves to define and implement suitable measures. Our infographic shows you suitable safety measures for different battery performance classes and 5 safety rules that you should absolutely observe.

Read more

Fire fighting for lithium battery fires

Lithium-ion battery fires are very difficult to fight. What do you have to do if a fire breaks out? In this article you will learn how you can extinguish the fire and the risks to be considered.

Read more

The specialist information on this page has been compiled carefully and to the best of our knowledge and belief. Nevertheless, DENIOS AG cannot assume any warranty or liability of any kind, whether in contract, tort or otherwise, for the topicality, completeness and correctness either towards the reader or towards third parties. The use of the information and content for your own or third party purposes is therefore at your own risk. In any case, please observe the locally and currently applicable legislation.

Log in
Your basketAdded to basket
Go to basket
*Required field

If you want to request more than one product, please use the shopping list function. Please also note our Data protection declaration .

This website is protected by reCAPTCHA and Google's privacy policy and terms of use apply.